Outer Join
The outer join is a method used in Pandas to combine datasets in a way that retains all rows from both DataFrames, filling in missing values (NaN) for non-matching entries. This comprehensive approach ensures no data is left out, making it especially useful for merging datasets with overlapping and distinct entries.
Syntaxβ
pandas.merge(left, right, how='outer', on=None, suffixes=('_x', '_y'), indicator=False, ...)
Parameters:β
left
: DataFrame to merge.right
: DataFrame to merge with.how
: Join type, set to"outer"
for this method.on
: Column or index level names to join on.suffixes
: Tuple of suffixes for overlapping column names inleft
andright
DataFrames.indicator
: Adds a column that indicates the source(s) of each row ("both"
,"left_only"
, or"right_only"
).
Example: Outer Joinβ
1. Data Preparationβ
Letβs start with two datasets:
employees_2021.csvβ
Name | Salary |
---|---|
John | 70000 |
Ava | 65000 |
Liam | 80000 |
employees_2022.csvβ
Name | Salary |
---|---|
John | 75000 |
Maria | 67000 |
Philip | 90000 |
2. Basic Outer Joinβ
To retain all rows from both datasets:
import pandas as pd
# Load datasets
df1 = pd.DataFrame({"Name": ["John", "Ava", "Liam"], "Salary": [70000, 65000, 80000]})
df2 = pd.DataFrame({"Name": ["John", "Maria", "Philip"], "Salary": [75000, 67000, 90000]})
# Perform outer join
result = pd.merge(df1, df2, how="outer", on="Name")
print(result)
Output:
Name Salary_x Salary_y
0 John 70000.0 75000.0
1 Ava 65000.0 NaN
2 Liam 80000.0 NaN
3 Maria NaN 67000.0
4 Philip NaN 90000.0
Salary_x
: Salary from the 2021 dataset.Salary_y
: Salary from the 2022 dataset.
3. Adding Suffixes for Clarityβ
To make columns more descriptive:
result = pd.merge(df1, df2, how="outer", on="Name", suffixes=("_2021", "_2022"))
print(result)
Output:
Name Salary_2021 Salary_2022
0 John 70000.0 75000.0
1 Ava 65000.0 NaN
2 Liam 80000.0 NaN
3 Maria NaN 67000.0
4 Philip NaN 90000.0
4. Using the indicator
Parameterβ
Add a column to track the origin of each row:
result = pd.merge(df1, df2, how="outer", on="Name", indicator=True)
print(result)
Output:
Name Salary_x Salary_y _merge
0 John 70000.0 75000.0 both
1 Ava 65000.0 NaN left_only
2 Liam 80000.0 NaN left_only
3 Maria NaN 67000.0 right_only
4 Philip NaN 90000.0 right_only
both
: Indicates rows present in both datasets.left_only
: Rows unique to the left dataset.right_only
: Rows unique to the right dataset.
5. Merging Without Specifying on
β
If on
is omitted, all overlapping columns are used as keys:
result = pd.merge(df1, df2, how="outer")
print(result)
Output:
Name Salary_x Salary_y
0 John 70000.0 75000.0
1 Ava 65000.0 NaN
2 Liam 80000.0 NaN
3 Maria NaN 67000.0
4 Philip NaN 90000.0
This merges the datasets based on shared column names.
Key Takeaways:β
- All Data Included: Outer join ensures that no rows are excluded.
- Missing Values: Rows without matches will have NaN in the corresponding columns.
- Indicator: Use the
_merge
column for detailed origin tracking. - Suffixes: Customize overlapping column names with meaningful suffixes.
Conclusionβ
The outer join method in Pandas provides a comprehensive way to merge datasets, ensuring that all rows from both datasets are included. With features like suffixes
and indicator
, itβs easy to manage and understand the resulting DataFrame. This functionality is crucial for handling complex datasets where completeness is essential.